
1 

 

Environmental Review Tool Search Configuration JSON Specification 
By default, the Attribute Search section of the Feature Search tool utilizes text searches of all visible 

fields.  Given that the data within the layer is not readily exposed, this makes successfully performing an 

attribute search difficult. The following screenshot shows an example of a layer which contains 3 

attributes which are searchable followed by the fourth, Bridge Type, which utilizes a domain list. The 

Feature Search tool can be configured to limit the fields displayed within the Attribute Search section of 

the Feature Search tool as well as configure the use of dropdown lists for specified fields. 

 
 

There are two ways to limit the fields/attributes listed in the Attribute Search section of the Feature 

Search tool: 

• Indicate which fields should be visible within the ArcGIS map document (.mxd) prior to 

publishing (see the Field Aliases &amp; visibility section of the Map Service Specifications for 

details), or  

• Configure the Feature Search tool by writing JSON code to include only those fields for display 

and enter the code in the Find JSON section of the Layer. 

 

Additionally, there are two ways to define the values within the dropdown list: 

• Create domain table(s) for the attribute(s) and include the domain table in the ArcGIS map 

document (.mxd) prior to publishing (see the Domain Tables section of the Map Service 

Specifications for details), or 

• Manually define the values within the JSON code and enter the code in the Find JSON section of 

the Layer. 

 

Writing the JSON code to configure the Feature Search 

Javascript Object Notation (JSON) and can be thought of as groupings of objects with name/value pairs 

as &lt;name&gt;:&lt;value&gt; in between each matching bracket {}.  Arrays of these objects are 

delimited by square brackets []. It starts with an array of layers in the published map resource, matching 

the indexes shown within the details of the service (see View Details in Layers help topic). 



2 

 

As can be seen in the example below, all contain a readable name (which should be initialized from the 

aliases published to the mapservice -  see the Field Aliases &amp; visibility section of the Map Service 

Specifications for details regarding defining aliases), and an attr, which points to the actual attribute 

being referenced. The attr object is an array of the attributes in the table and how they are treated. By 

default, that’s all that’s needed and it will assume the attribute is a string match. 

 

Tips for writing successful JSON code 

• Copy the JSON code from a Layer which already has the Feature Search successfully configured 

and edit it for use with the new layer - that way you're not creating the code from scratch but 

utilizing a working example. 

• Utilize Notepad++ (freeware downloadable from the internet) or another text editor which 

helps to identify matching brackets, parenthesis, etc. Dangling or mismatched brackets, 

parenthesis, etc. will cause the JSON code to fail. 

• After saving the JSON code within the Layer, immediately test the Attribute Search section of 

the Feature Search tool for the configured layer to verify that it is working successfully. If the 

Map is already open, refresh the page prior to testing. 

 

JSON code components defined 

NOTE: the screenshots below do not match the JSON Example code. 

• name: name of Layer within the map service 

 
 

• index: index of the layer/sub layer as defined within the map service detail 



3 

 

 
 

• parent: name of layer within ERT Map’s table of contents, defined as the Layer Title within 

Layers. 

 
 

• name (within attrs section): alias of attribute as defined within the Fields section of the Layer 

within the map service 



4 

 

 
 

• attr (within attrs section): name of attribute as defined within the Fields section of the Layer 

within the map service 

 
 

• type (within attrs section): indicates search types other than string match. 

� noFind - not findable, 

� number - numeric range, 

� comboAttr - allows two or more attributes to be grouped such that they can be 

combined differently than the default AND, 

� select - dropdown list, 

o selectType (within select section): indicates whether the dropdown list will be manually 

defined (data) or utilize a domain list within the map service (dataquery) or use the 

selection of one dropdown list to dynamically populate a second dropdown menu 

(subquery) 

� data: used to manually define values within dropdown list values 

• size (OPTIONAL): determines the size of the selection list 

• exact (OPTIONAL): makes the comparison = instead of like 

• val: data value as it appears within the layer's attribute table 

• disp: value as it should actually be displayed, as the val is often a code 

or not user-friendly. 

� dataquery: use a domain table published within the map service to define the 

values within the dropdown list 

• queryLayer: same as parent - name of layer within ERT Map’s table of 

contents, defined as the Layer Title within Layers. 



5 

 

 
 

� querySubLayer: index of the domain table (layer/sub layer) as defined 

within the map service detail 

 



6 

 

� querySubLayerName: name of domain table (table/layer) within the 

map service 

 



7 

 

� outFields: name of attribute within domain table as defined in the map 

service 

 
� valField: name of field/attribute which contains the display/value 

attributes to populate the list from a map service query - typically the 

same as outFields 

� dispField: name of field/attribute which contains the display/value 

attributes to populate the list from a map service query - typically the 

same as outFields 



8 

 

� subquery: same as dataquery but allows specifying another feature search 

attribute (queryField) as a name of another field in this layer which when 

values are selected, a query using only those values will be done against the 

sub-table’s specified attribute (queryAttr) in order to dynamically populate 

the field, such as only populating the sub-watersheds intersecting a selected 

watershed field. 

NOTE: For map services which have layers within Groups, the group is reflected in the JSON with 

{unused: true} as the Feature Search tool only applies to feature classes, not groups. So, in the following 

map service example in which there are 3 Groups at Index 0, 4, and 8, this is reflected by {unused: true} 

within the JSON 3 times, whereas the feature classes are reflected according to the instructions above. 

Expand this section to view the example. 

 
 

 the JSON is as follows: 



9 

 

 
...... 

 

JSON Example 

The example text can be downloaded here. 



10 

 

 


